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Abstract

In this paper, we study the robust partial eigenvalue assignment problem using state feedback control in second-order

control systems, which means that the feedback control matrices not only assign specific eigenvalues to the second-order

closed-loop system, but also that the system is robust, or insensitive to perturbations in the coefficient matrices. Some

measures of robustness of the closed-loop system are discussed and a numerical method is proposed such that it aims to

minimize one measure of the conditioning of the closed-loop system. Numerical examples show that the method is

convergent, and often leads to better conditioned closed-loop system.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Consider the time-invariant second-order control system

M €zþ C _zþ Kz ¼ Bu, (1)

where z ¼ zðtÞ 2 Rn; u ¼ uðtÞ 2 Rm; M ;C;K 2 Rn�n are symmetric matrices with M positive definite and K

nonsingular, and B 2 Rn�m with rankðBÞ ¼ m. This kind of systems arise naturally in variety of applications,
including, for example, the control of large flexible space structure, earthquake engineering, the control of
mechanical multi-body systems, stabilization of damped systems and robotics. One of the important control
problems is to design a proportional and derivative state feedback controller of the form

u ¼ FT _zþ GTzþ v,

where F ;G 2 Rn�m, such that the closed-loop system

M €zþ ðC � BFTÞ_zþ ðK � BGTÞz ¼ Bv (2)

has desired properties.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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It is well known that the behavior of the second-order system (1) is governed by the eigenstructure of its
associated quadratic pencil

QðlÞ ¼ l2M þ lC þ K . (3)

The desired properties of the closed-loop system can therefore be achieved by selecting the feedback gain
matrices F and G to assign specified eigenvalues to the quadratic pencil associated with the closed-loop system

QcðlÞ ¼ l2M þ lðC � BFTÞ þ ðK � BGTÞ. (4)

The problem of finding matrices F and G such that the quadratic pencil (4) has the specified eigenvalues is
called the eigenvalue assignment problem in second-order control systems. In most practical situations,
however, only a few eigenvalues of the open-loop system (1) are undesirable, so it makes more sense to alter
only those undesirable eigenvalues, while keeping the rest of the spectrum invariant. This leads to the
following problem, known as the partial eigenvalue assignment problem in second-order control systems:

Problem PEA. Given n� n real symmetric matrices M ;C;K with M positive definite and K nonsingular, the
n�m real control matrix B, the self-conjugate subset fl1; l2; . . . ; lpg ðponÞ of the open-loop spectrum
fl1; . . . ; lp; lpþ1; . . . ; l2ng and the corresponding eigenvector set fx1;x2; . . . ;xpg, and given a self-conjugate set
fm1; m2; . . . ;mpg of numbers, find n�m real feedback matrices F and G such that the spectrum of the quadratic
pencil (4) is fm1; . . . ; mp; lpþ1; . . . ; l2ng.

It is well known (see Ref. [1]) that the system modelled by Eq. (1) is completely controllable if and only if

rankð½l2M þ lC þ K ;B�Þ ¼ n

for every eigenvalue l of the quadratic pencil (3). Completely controllability is a necessary and sufficient
condition for the existence of F and G such that the quadratic pencil (4) has a spectrum that can be arbitrarily
assigned. However, if the system is only partially controllable, that is, if

rankð½l2M þ lC þ K ;B�Þ ¼ n

only for the p eigenvalues l1; l2; . . . ; lp, then only those eigenvalues can be arbitrarily assigned by an
appropriate choice of F and G. Furthermore, when m41, the solution to Problem PEA is essentially
undetermined, with many degrees of freedom. Therefore, the question arises as to how this freedom is to be
parameterized and how it is to be exploited in practice, such that the eigenvalues of the closed-loop quadratic
pencil (4) should be insensitive to perturbations in matrices Mc ¼M ;Cc ¼ C � BFT and Kc ¼ K � BGT. This
leads to the following robust partial eigenvalue assignment problem in second-order control systems:

Problem RPEA. Find a solution ðF ;GÞ to Problem PEA, such that the closed-loop system is robust, in the
sense that the eigenvalues of the quadratic pencil QcðlÞ in Eq. (4) are as insensitive to perturbations in the
matrices Mc;Cc and Kc as possible.

Problem PEA is first proposed by B.N. Datta, S. Elhay and Y.M. Ram [2]. In that paper, three
orthogonality relations between the eigenvectors of a symmetric definite quadratic pencil are derived, and then
a numerical method is proposed based on these relations. Different from some other algorithms before, the
method in Ref. [2] works directly with the data matrices M;C and K of the second-order system, rather than
the 2n� 2n first-order linearization of the second-order system. This allows the exploitation of matrix
structural properties, such as symmetry, sparsity and bandedness. Furthermore, the method does not require
knowledge of the unchanged eigenvalues and their corresponding eigenvectors of the open-loop pencil.
However, the robustness issue is not considered there, and so it usually cannot give better conditioned closed-
loop systems, which can be seen from the numerical examples in Section 4. Some related work can be also
found in Ref. [12–14].

In our former paper [3], we give a numerical method for finding a solution to Problem RPEA, where
eigenvectors are chosen in certain subspaces such that each vector is as orthogonal as possible to the space
spanned by the remaining vectors. Although numerical experiments show that the method proposed in Ref. [3]
does often lead to better conditioned closed-loop systems, but that method can not be guaranteed to converge
theoretically. In this paper, we propose another numerical method for Problem RPEA. The new method is to
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minimize one measure of conditioning of the closed-loop system. It uses similar techniques as described in
Ref. [4], where eigenvectors are chosen in certain subspaces such that some measure of the distance between
the eigenvectors and some orthogonal basis of a certain subspace is minimized. A critical advantage of the
present method over the method proposed in Ref. [3] is that it is convergent, and the numerical experiments in
Section 4 also show that it gives rise to significant improvement in the conditioning of the closed-loop systems.

Throughout this paper, the following notations will be used. The 2n eigenvalues of the open-loop pencil
QðlÞ are l1; l2; . . . ; l2n, and corresponding eigenvectors are x1;x2; . . . ;x2n, and we let
L ¼ diagðl1; l2; . . . ; l2nÞ, whose diagonal elements are eigenvalues of QðlÞ,
L1 ¼ diagðl1; l2; . . . ; lpÞ, whose diagonal elements are the eigenvalues to be altered,

L2 ¼ diagðlpþ1; . . . ; l2nÞ, whose diagonal elements are the eigenvalues kept unchanged,

X ¼ ½x1;x2; . . . ;x2n�, whose columns are corresponding eigenvectors of QðlÞ,
X 1 ¼ ½x1; x2; . . . ; xp�,

X 2 ¼ ½xpþ1;xpþ2; . . . ; x2n�,

D ¼ diagðm1;m2; . . . ; mpÞ, whose diagonal elements are eigenvalues of QcðlÞ,
Y ¼ ½y1; y2; . . . ; yp�, whose columns are corresponding eigenvectors of QcðlÞ.
In addition, for any matrix A 2 Cm�n, AT denotes the transpose of A, Ā the conjugate of A, and A� the conjugate
transpose of A. The range and the null space of A are denoted by RðAÞ and NðAÞ, respectively, that is

RðAÞ ¼ fy 2 Cm: y ¼ Ax for some x 2 Cn
g,

NðAÞ ¼ fx 2 Cn:Ax ¼ 0g.

Given any subset S � Cn, the orthogonal complement of S is denoted by S?, that is

S? ¼ fx 2 Cn: x�y ¼ 0 forall y 2Sg.

The symbol k � kF stands for the Frobenius norm, and k � k2 the spectral norm and the Euclidean vector norm.

2. Robust partial eigenvalue assignment

Clearly, Problem RPEA is only a qualitative description for the robust eigenvalue assignment problem in
second-order control systems. In order to do further study, we must precisely formulate this problem in
quantitative form. To this end, we should first show how solutions to Problem PEA are parameterized.

2.1. Parameterized solutions

Note that in Problem PEA the eigenvalues lpþ1; lpþ2; . . . ; l2n are kept unchanged, if the corresponding
eigenvectors xpþ1;xpþ2; . . . ;x2n are also required to be kept unchanged, then it follows from the definition of
eigenvalues of a quadratic pencil that ðF ;GÞ is a solution to Problem PEA if and only if there exist a n� p

matrix Y ¼ ½y1; y2; . . . ; yp� satisfying

yja0; j ¼ 1; 2; . . . ; p and yi ¼ ȳk if mi ¼ m̄k, (5)

such that

MYD2 þ ðC � BFTÞYDþ ðK � BGTÞY ¼ 0, (6)

and

MX 2L2
2 þ ðC � BFTÞX 2L2 þ ðK � BGTÞX 2 ¼ 0. (7)

Note that L2 and X 2 also satisfy that

MX 2L2
2 þ CX 2L2 þ KX 2 ¼ 0,

Eq. (7) then becomes

BðFTX 2L2 þ GTX 2Þ ¼ 0. (8)
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Because B is assumed to be of full column rank, Eq. (8) implies that

FTX 2L2 þ GTX 2 ¼ 0,

that is,

G

F

� �T X 2

X 2L2

" #
¼ 0. (9)

From Ref. [2], we know that if the sets fl1; l2; . . . ; lpg and flpþ1; lpþ2; . . . ; l2ng are disjoint, then

L1X
T
1 MX 2L2 � XT

1 KX 2 ¼ 0, (10)

that is,

�KX 1

MX 1L1

" #T
X 2

X 2L2

" #
¼ 0. (11)

If we also assume that all eigenvalues of QðlÞ are nondefective, that is, we assume that the matrix

X 1 X 2

X 1L1 X 2L2

" #

is nonsingular, and note that the sets fx1; x2; . . . ;xpg and fl1; l2; . . . ; lpg are both self-conjugate, then Eq. (11)
implies that

�KX 1

MX 1L1

" #�
X 2

X 2L2

" #
¼ 0,

and hence we have

R
X 2

X 2L2

" # !?
¼ R

�KX 1

MX 1L1

" # !
. (12)

This, together with Eq. (9), gives rise to that there must exists a p�m matrix U such that

G

F

� �
¼
�KX 1

MX 1L1

" #
U ,

which implies that

F ¼MX 1L1U ; G ¼ �KX 1U . (13)

Substituting Eq. (13) into Eq. (6) gives

MYD2 þ CYDþ KY ¼ BUTðL1X
T
1 MYD� XT

1 KY Þ. (14)

From Eq. (14), we can see that for each yj ; j ¼ 1; 2; . . . ; p, there exist a vj such that

QðmjÞyj ¼ ðm
2
j M þ mjC þ KÞyj ¼ Bvj,

that is

yj ¼ ðQðmjÞÞ
�1Bvj,

and so yj must satisfy that

yj 2 RððQðmjÞÞ
�1BÞ. (15)

Together with condition (5), yj then must satisfy

0ayj 2 RððQðmjÞÞ
�1BÞ; j ¼ 1; 2; . . . ; p and yi ¼ ȳk if mi ¼ m̄k. (16)
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Thus we have proved that if the eigenvectors xpþ1; . . . ;x2n are also required to be kept unchanged in Problem
PEA, then F and G are a pair of solutions to Problem PEA if and only if F and G are in the form of Eq. (13),
where yj ðj ¼ 1; 2; . . . ; pÞ satisfy condition (16), and U is determined by Eq. (14).

It is worthwhile to point out that for a given Y, where Y ¼ ½y1; y2; . . . ; yp� with yj satisfying condition (16),
Eq. (14) may have no solutions. The following is a simple example:

Example. Consider a second-order control system with

M ¼
1 0

0 1

� �
; C ¼

�3 0

0 3

� �
; K ¼

2 0

0 2

� �
and B ¼

1 0

0 1

� �
.

Then it is easy to show that the 4 eigenvalues of its associated quadratic pencil are

l1 ¼ 1; l2 ¼ 2; l3 ¼ �1; l4 ¼ �2,

and the corresponding eigenvectors are

x1 ¼
1

0

� �
; x2 ¼

1

0

� �
; x3 ¼

0

1

� �
; x4 ¼

0

1

� �
.

Suppose we are to change l1 and l2 to m1 ¼ �3 and m2 ¼ �4, while keep l3; l4 and x3; x4 unchanged. After
some calculation, we have

ðQðm1ÞÞ
�1B ¼

1=20 0

0 1=2

" #
; ðQðm2ÞÞ

�1B ¼
1=30 0

0 1=6

" #
.

Case 1: If y1 and y2 are taken as y1 ¼ y2 ¼
1

0

� �
, then Eq. (14) becomes

20 30

0 0

� �
¼ UT

�5 �6

�8 �10

� �
,

which has a unique solution.
Case 2: If y1 and y2 are taken as y1 ¼ y2 ¼

0

1

� �
; then Eq. (14) becomes

0 0

2 6

� �
¼ UT

0 0

0 0

� �
,

which has no solution.

Next we try to give some necessary and sufficient conditions on Y such that Eq. (14) has solutions.
In fact, if Y ¼ ½y1; y2; . . . ; yp� with yj satisfying condition (16), then there must exist a unique m� p matrix

V ¼ ½v1; v2; . . . ; vp� such that

MYD2 þ CYDþ KY ¼ BV , (17)

and if the QR decomposition of B is B ¼ ½Q1; Q2�
R

0

� �
, where ½Q1; Q2� is an orthogonal matrix with Q1 2

Rn�m and Q2 2 Rn�ðn�mÞ, and R 2 Rm�m is upper triangular and nonsingular, then we have

V ¼ R�1QT
1 ðMYD2 þ CYDþ KY Þ. (18)

On the other hand, substituting Eq. (17) into Eq. (14) gives

BV ¼ BUTðL1X
T
1 MYD� XT

1 KY Þ. (19)

This, together with rankðBÞ ¼ m, implies that

V ¼ UTðL1X
T
1 MYD� XT

1 KY Þ. (20)

It is well known that Eq. (20) has a solution if and only if

rank
Z

V

� �� �
¼ rank ðZÞ, (21)
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where V is defined by Eq. (18), and

Z ¼ L1X
T
1 MYD� XT

1 KY . (22)

In summary, we have proved the following theorem:

Theorem 2.1. Assume that the sets fl1; . . . ; lpg and flpþ1; . . . ; l2ng are disjoint and all eigenvalues of QðlÞ are

nondefective. If the eigenvectors xpþ1; . . . ;x2n are also required to be kept unchanged in Problem PEA, then it has

a solution if and only if there exists a matrix Y ¼ ½y1; y2; . . . ; yp� with yj satisfying condition (16) such that

equality (21) holds, where Z and V are defined by Eqs. (22) and (18), respectively.

Lemma 2.1. Suppose Z 2 Cr�k; V 2 Cs�k, then rank
Z

V

� �� �
¼ rank ðZÞ if and only if NðZÞ �NðV Þ.

Proof. Suppose the singular value decomposition of Z is Z ¼ ~U
S 0

0 0

� �
~V
T
, where ~U and ~V are unitary

matrices, S ¼ diagðs1; . . . ; skÞ; s1Xs2X � � �Xsk40, and k ¼ rankðZÞ, then we have

~U 0

0 I

" #
Z

V

� �
~V
T
¼

S 0

0 0

B1 B2

2
64

3
75,

where V ~V
T
¼ ½B1; B2�, from which it is easy to know that rank

Z

V

� �� �
¼ rankðZÞ if and only if B2 ¼ 0,

which is equivalent to NðZÞ �NðV Þ. Thus the lemma is proved. &

Combining Theorem 2.1 with Lemma 2.1 yields

Theorem 2.2. Assume that the sets fl1; . . . ; lpg and flpþ1; . . . ; l2ng are disjoint and all eigenvalues of QðlÞ are

nondefective. If the eigenvectors xpþ1; . . . ;x2n are also required to be kept unchanged in Problem PEA, then it has

a solution if and only if there exists a matrix Y ¼ ½y1; y2; . . . ; yp� with yj satisfying condition (16) such that

NðZÞ �NðV Þ, where Z and V are defined by Eqs. (22) and (18), respectively.

We may see that it is somewhat difficult to verify whether the given data satisfies rank
Z

V

� �� �
¼ rank ðZÞ

or NðZÞ �NðV Þ, since the matrix Y in Eqs. (18) and (22) is essentially undetermined. The following theorem
gives some sufficient conditions, which are easy to use.

Theorem 2.3. Assume that the sets fl1; . . . ; lpg and flpþ1; . . . ; l2ng are disjoint and all eigenvalues of QðlÞ are

nondefective. If

span
yj

mjyj

 !
: yj 2 RðQðmjÞ

�1BÞ; j ¼ 1; 2; . . . ; p

( )
\ R

X 2

X 2L2

" # !
¼ f0g, (23)

and there exist a matrix Y ¼ ½y1; y2; . . . ; yp� with yj satisfying condition (16) such that the matrix
Y

YD

� �
is of full

column rank, then Z ¼ L1X
T
1 MYD� XT

1 KY is nonsingular, and hence Problem PEA has at least one solution.

Proof. Let x 2 Cp such that Zx ¼ 0, that is,

�KX 1

MX 1L1

" #T
Y

YD

� �
x ¼ 0.

This, together with Eq. (11), implies that

Y

YD

� �
x 2 R

X 2

X 2L2

" # !
.
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Obviously, we have

Y

YD

� �
x 2 span

yj

mjyj

 !
: yj 2 RðQðmjÞ

�1BÞ; j ¼ 1; 2; . . . ; p

( )
.

Thus, it follows from Eq. (23) that
Y

YD

� �
x ¼ 0, and so x ¼ 0, since we assume that

Y

YD

� �
has full column

rank. This show that Z must be nonsingular, which implies that equality (21) must hold, and hence, by
Theorem 2.1, Problem PEA has at least one solution. &

In what follows we assume that Problem PEA does have solutions, assume that the sets fl1; . . . ; lpg and
flpþ1; . . . ; l2ng are disjoint, assume that all eigenvalues of QðlÞ are nondefective, and let

Y ¼ fY ¼ ½y1; y2; . . . ; yp�: yj satisfies conditions ð16Þ and ð21Þg.

Then it is easy to see that solving Problem RPEA is equivalent to selecting Y 2 Y such that the corresponding
closed-loop system is robust, in the sense that the eigenvalues of the closed-loop quadratic pencil are as
insensitive to perturbations in the coefficient matrices as possible.

2.2. Measures of robustness

To formulate Problem RPEA in quantitative form, another key problem is how to choose a proper
measure of robustness. From the numerical analysis point of view the robustness problem of a closed-loop
system is essentially the conditioning problem of the eigenproblem corresponding to the closed-loop quadratic
pencil. Thus let us first recall some basic results on the conditioning of matrix eigenproblems. For a 2n� 2n

matrix ~A, if ~A is nondefective, that is, ~A has 2n linearly independent eigenvectors, then it can be shown [4–6]
and [14]) that the sensitivity of the eigenvalue lj to perturbation in the components of ~A depends on the
magnitude of the condition number cj, where

cj ¼ k~zjk2k ~yjk2=j~z
�
j ~yjjX1, (24)

and ~yj, ~zj are the right and left eigenvectors of ~A corresponding to lj. In the case of multiple eigen-
values, a particular choice of eigenvectors is assumed. More precisely, if a perturbation OðeÞ is made
in ~A, then the corresponding first-order perturbation in the eigenvalue lj of ~A is of the order of encj. If ~A is
defective, then the corresponding perturbation in some eigenvalue is at least an order of magnitude worse in e,
and therefore, system matrices which are defective are necessarily less robust than those which are
nondefective.

Note that the left eigenvectors ~zj can be chosen as

~Z
�
	 ½~z1; ~z2; . . . ; ~z2n�

� ¼ ~Y
�1
, (25)

where ~Y ¼ ½ ~y1; ~y2; . . . ; ~y2n�, and if the right eigenvectors ~yj are normalized such that k ~yjk2 ¼ 1, then the
condition numbers are given by

cj ¼ k~zjk2X1, (26)

and we have

k ~YkF ¼ ð2nÞ1=2; k ~Y
�1
kF ¼ k

~Z
�
kF ¼

X2n

j¼1

c2j

 !1=2

. (27)

We can then define the measure n by

n ¼ ð2nÞ�1=2kck2 ¼ ð2nÞ�1=2k ~Y
�1
kF , (28)

where c ¼ ½c1; c2; . . . ; c2n�. Note that n ¼ ð2nÞ�1k ~YkFk
~Y
�1
kF 	 ð2nÞ�1kF ð ~Y Þ, and then minimizing the measure

n is equivalent to minimizing the F-condition number of the matrix of eigenvectors ~Y .
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As for the closed-loop quadratic pencil (4), it is well known that when M is nonsingular, the
quadratic eigenvalue problem corresponding to Eq. (4) is equivalent to the following standard eigenvalue
problem:

~A
x

lx

� �
	

0 I

M�1ðK � BGTÞ M�1ðC � BFTÞ

" #
x

lx

� �
¼ l

x

lx

� �
, (29)

and in this case the matrix of eigenvectors ~Y is

~Y ¼
Y X 2

YD X 2L2

" #
, (30)

where the matrices X 2 and L2 are to remain unaltered, and D is given. Thus it is natural to choose

kF

Y X 2

YD X 2L2

" # !
(31)

as the measure of robustness of the closed-loop system.

2.3. Formulation

Now, based on the discussion above, it is natural to formulate Problem RPEA in quantitative form as
finding Y 2 Y such that the minimum value of the function

f ðY Þ ¼ kF

Y X 2

YD X 2L2

" # !
¼

Y X 2

YD X 2L2

" #�����
�����

F

Y X 2

YD X 2L2

" #�1������
������

F

(32)

is achieved. However, it is often very difficult to minimize f ðY Þ numerically, and even when such a solution
can be found, usually the cost is very expensive. So, instead of finding the optimal solution, it is more advisable
to find a way to compute a better solution without costing too much. To this end, we first prove the following
theorem.

Theorem 2.4. Consider a nonsingular matrix S ¼ ½S1; S2�, where S1 2 C2n�p can be chosen, S2 2 C2n�ð2n�pÞ is

fixed, and each column of S is of unit length. Suppose the QR decomposition of S2 is S2 ¼ ½Q2; Q1�
R

0

� �
, where

½Q2; Q1� is unitary, and R is upper triangular and nonsingular, then the minimum value of the F-condition number

of S is achieved by setting S1 ¼ Q1U , where U is any unitary matrix.

Proof. Writing S1 ¼ ½Q2; Q1�
S12

S11

" #
, we have

S ¼ ½S1; S2� ¼ ½Q2; Q1�
S12 R

S11 0

" #
¼ ½Q1; Q2�

S11 0

S12 R

" #
,

and so it follows that

S�1 ¼
S11 0

S12 R

" #�1
Q�1

Q�2

" #
¼

S�111 0

�R�1S12S�111 R�1

" #
Q�1

Q�2

" #
.

Since each column of S is of unit length, we have

kSk2F ¼ 2n and kS�1k2F ¼
S�111

�R�1S12S�111

" #�����
�����
2

F

þ kR�1k2F .
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Note that ½S�111 0�
S11

S12

" #
¼ I implies that kS�111 k

2
FXp, then we obtain

ðkF ðSÞÞ
2
¼ kSk2FkS

�1k2FX2nðkS�111 k
2
F þ kR

�1k2F ÞX2nðpþ kR�1k2F Þ,

and kF ðSÞ achieves its minimum value when S11 is a unitary matrix and S12 ¼ 0. Thus the theorem is
proved. &

Theorem 2.4 tells us that when the columns of S1 form an orthogonal basis of RðS2Þ
?, the F-condition

number of S is minimized. So, in essence, the aim of robust eigenvalue assignment problem is, therefore, to

select Y 2 Y satisfying k ~yjk2 	
yj

mjyj

 !�����
�����
2

¼ 1, such that matrix ~Y 1 ¼
Y

YD

� �
is as close as possible to some

orthogonal basis of R
X 2

X 2L2

" # !?
. We next consider how to measure the distance between the matrix

~Y 1 ¼ ½ ~y1; ~y2; . . . ; ~yp� and some matrix ~X whose columns are an orthogonal basis of R
X 2

X 2L2

" # !?
.

Obviously, for a given ~Y 1, it is also very difficult to find a ~X such that the distance between ~Y 1 and ~X is

minimized. However, for any given ~X , the distance can be minimized by setting ~Y 1 such that each column ~yj of

~Y 1 is the normalized orthogonal projection of the column ~xj of ~X into the subspaces

Wj ¼ R
QðmjÞ

�1B

mjQðmjÞ
�1B

2
4

3
5

0
@

1
A; j ¼ 1; 2; . . . ; p. (33)

Suppose the columns of W j form an orthogonal basis of Wj, then ~yj is determined by

~yj ¼W jW
�
j ~xj=kW

�
j ~xjk2, (34)

and we can use the following number as a measure of the distance between ~Y 1 and ~X

n1 ¼
Xp

j¼1

sin2 yj, (35)

where yj is the angle between ~yj and ~xj, that is, cos yj ¼ kW
�
j ~xjk2. If we define

f ð ~X Þ ¼
Xp

j¼1

kW �
j ~xjk

2
2, (36)

then we have

n1 ¼
Xp

j¼1

sin2 yj ¼ p�
Xp

j¼1

cos2 yj ¼ p� f ð ~X Þ.

This shows that minimizing n1 is equivalent to maximizing f ð ~X Þ, and we hence turn to consider the following
problem:

Problem A. Find a ~X , whose columns form an orthogonal basis of R
X 2

X 2L2

" # !?
, such that the maximum

value of f ð ~X Þ is achieved.

Once we have found a solution to Problem A, ~Y 1 ¼
Y

YD

� �
is then determined by Eq. (34). If such Y makes

equality (21) hold, then U can be obtained from Eq. (20), and we may expect that F and G given by Eq. (13)
are able to make the corresponding closed-loop system be better conditioned.
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3. Orthogonal basis selection method

In this section, we describe a numerical approach to compute a ~X to maximize f ð ~X Þ, where the

columns of ~X form an orthogonal basis of R
X 2

X 2L2

" # !?
, so we call it orthogonal basis selection (OBS)

method. Firstly, we need to construct an orthogonal basis for the space Wj for each j ¼ 1; 2; . . . ; p: In fact,

it is not necessary to compute an orthogonal basis for the spaceWj directly. In stead of that we can first compute an

orthogonal basis for the spaceRðQðmjÞ
�1BÞ, comprised by the columns of matrix ~W j, then the columns of the matrix

W j ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jmjj
2

q ~W j

mj
~W j

" #
(37)

form an orthogonal basis for the space Wj . As for the computation of ~W j, we here use QR decomposition of

QðmjÞ
�1B, that is, if the QR decomposition of QðmjÞ

�1B is

QðmjÞ
�1B ¼ ½ ~W j ; Ŵ j�

Rj

0

� �
(38)

with ½ ~W j ; Ŵ j� unitary and Rj upper triangular and nonsingular, then ~W j is the required matrix.

To solve Problem A, an iterative method is used, where vectors ~xj are determined iteratively by applying
plane rotations to an initial matrix, such that each rotation increases f ð ~X Þ by an optimal quantity. Naturally,
we can choose an orthogonal basis of

R
X 2

X 2L2

" # !?
¼ R

�KX 1

MX 1L1

" # !

as the initial matrix. For the conveniency of computing plane rotations, we hope the matrix keep real, so we
are to compute a real orthogonal basis as the initial matrix. Assume that the diagonal elements of L1 have
been ordered as

L1 ¼ diagfl1; l2; . . . ; l2l�1; l2l ; l2lþ1; . . . ; lpg,

where l2j�1 ¼ aj þ ibj ; l2j ¼ aj � ibj ; aj ;bj 2 R;bja0, for j ¼ 1; 2; . . . ; l, and lj 2 R, for j ¼ 2l þ 1; . . . ; p, and
correspondingly

X 1 ¼ ½x1;x2; . . . ;x2l�1;x2l ;x2lþ1; . . . ;xp�,

where x2j�1 ¼ uj þ ivj ;x2j ¼ uj � ivj ; uj ; vj 2 Rn, for j ¼ 1; 2; . . . ; l, and xj 2 Rn, for j ¼ 2l þ 1; . . . ; p. Then we
have

X 1 ¼ X 1RH; X 1L1 ¼ X 1RL1RH,

where

X 1R ¼ ½u1; v1; . . . ; ul ; vl ;x2lþ1; . . . ; xp�,

L1R ¼ diag
a1 b1
�b1 a1

" #
; . . . ;

al bl

�bl al

" #
; l2lþ1; . . . ; lp

 !
,

H ¼ diag
1 1

i �i

� �
; . . . ;

1 1

i �i

� �
; 1; . . . ; 1

� �
,

and hence it follows that

�KX 1

MX 1L1

" #
¼

�KX 1RH

MX 1RL1RH

" #
¼

�KX 1R

MX 1RL1R

" #
H.
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Therefore, if the QR decomposition of
�KX 1R

MX 1RL1R

" #
is

�KX 1R

MX 1RL1R

" #
¼ ½ ~S1; ~S2�

R

0

� �
, (39)

with ½ ~S1; ~S2� unitary, R upper triangular and nonsingular, then the columns of ~S1 form an orthogonal basis of

R
�KX 1

MX 1L1

" # !
, and so we can select ~S1 as the initial matrix ~X 0, which is real as required.

Suppose we have had ~X k, then we are to apply a series of rotations to ~X k to obtain ~X kþ1 iteratively. Let
~X k ¼ ½ ~x1; ~x2; . . . ; ~xp�. If mj is real, then we can simply take ~yj as the normalized projection of ~xj into the
subspace Wj, that is,

~yj ¼W jW
�
j ~xj=kW

�
j ~xjk2, (40)

and in this case the corresponding value to be maximized is

cos2 yj ¼ kW
�
j ~xjk

2
2,

where yj is the angle between ~yj and ~xj . If mj is complex and mj ¼ m̄k, then the corresponding eigenvectors ~yj

and ~yk should also be complex conjugate, and so in this case we take ~yj and ~yk as the normalized projection of
1ffiffi
2
p ð ~xj þ i ~xkÞ and

1ffiffi
2
p ð ~xj � i ~xkÞ into the subspaces Wj and Wk, respectively, that is,

~yj ¼W jW
�
j

1ffiffiffi
2
p ð ~xj þ i ~xkÞ

� �
W �

j

1ffiffiffi
2
p ð ~xj þ i ~xkÞ

� �����
����
2

�
,

~yk ¼W kW �
k

1ffiffiffi
2
p ð ~xj � i ~xkÞ

� �
W �

k

1ffiffiffi
2
p ð ~xj � i ~xkÞ

� �����
����
2

�
, (41)

and then the corresponding value to be maximized is

cos2 yj ¼ cos2 yk ¼
1

2
kW �

j ð ~xj þ i ~xkÞk
2
2,

where yj is the angle between ~yj and
1ffiffi
2
p ð ~xj þ i ~xkÞ, and yk is the angle between ~yk and 1ffiffi

2
p ð ~xj � i ~xkÞ.

In view of this case, at each step of the iteration we will select two indices 1pj1oj2pp and update the two

vectors ~xj1 ; ~xj2 of the current matrix ~X k by a rotation, which maintains their orthogonality and maximizesPp
j¼1cos

2 yj, where cos yj ; j ¼ 1; 2; . . . ; p are defined above. More precisely, for a certain j1 and j2, the updated

vectors x̂j1 and x̂j2 are taken as

½x̂j1 ; x̂j2 � ¼ ½ ~xj1 ; ~xj2 �
cos a � sin a

sin a cos a

� �
, (42)

where a is to be selected such that
Pp

j¼1cos
2 yj achieves its maximum value. In order to determine a, we should

consider the following four different cases.
Case a: mj1

and mj2
are both real. In this case only cos yj1 and cos yj2 are changed, and

cos2 yj1 þ cos2 yj2 ¼ kW
�
j1

x̂j1k
2
2 þ kW

�
j2

x̂j2k
2
2;

Case b: mj1
is real, while mj2

is complex with mj2
¼ m̄j02

. In this case cos yj1 ; cos yj2 , and cos yj02
are changed, and

cos2 yj1 þ cos2 yj2 þ cos2 yj02
¼ kW �

j1
x̂j1k

2
2 þ kW

�
j2
ðx̂j2 þ i ~xj02

Þk22;

Case c: mj2
is real, while mj1

is complex with mj1
¼ m̄j01

. In this case cos yj1 ; cos yj01
, and cos yj2 are changed, and

cos2 yj1 þ cos2 yj01
þ cos2 yj2 ¼ kW

�
j1
ðx̂j1 þ i ~xj01

Þk22 þ kW
�
j2

x̂j2k
2
2;
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Case d: Both mj1
and mj2

are complex with mj1
¼ m̄j01

; mj2
¼ m̄j02

. In this case cos yj1 ; cos yj01
; cos yj2 ; and cos yj02

are changed, and

cos2 yj1 þ cos2 yj01
þ cos2 yj2 þ cos2 yj02

¼ kW �
j1
ðx̂j1 þ i ~xj01

Þk22 þ kW
�
j2
ðx̂j2 þ i ~xj02

Þk22.

For Case a it is enough to select a maximizing the function

jðaÞ ¼ a1 cos 2aþ a2 sin 2aþ a0, (43)

where

a1 ¼
1
2
ðkW �

j1
~xj1k

2
2 þ kW

�
j2
~xj2k

2
2 � kW

�
j1
~xj2k

2
2 � kW

�
j2
~xj1k

2
2Þ,

a2 ¼ ~xT
j1

W j1W
�
j1
~xj2 � ~xT

j1
W j2W

�
j2
~xj2 ,

a0 ¼
1

2
ðkW �

j1
~xj1k

2
2 þ kW

�
j2
~xj2k

2
2 þ kW

�
j1
~xj2k

2
2 þ kW

�
j2
~xj1k

2
2Þ.

Now, let

j0ðaÞ ¼ 2ða2 cos 2a� a1 sin 2aÞ ¼ 0. (44)

Then it is easy to verify that when a satisfies that

sin 2a ¼
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 þ a2

2

q 	 s1 and cos 2a ¼
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 þ a2

2

q 	 c1, (45)

the function jðaÞ achieves its maximum value
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1 þ a2

2

q
þ a0. Thus it follows that

sin a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c1

2

r
; cos a ¼ signðs1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c1

2

r
, (46)

which are just the required values in Eq. (42).
For Cases b–d, the function to be maximized is

jðaÞ ¼ a1 cos 2aþ a2 sin 2aþ a3 cos aþ a4 sin aþ a0, (47)

where

a1 ¼
1
2
ðkW �

j1
~xj1k

2
2 þ kW

�
j2
~xj2k

2
2 � kW

�
j1
~xj2k

2
2 � kW

�
j2
~xj1k

2
2Þ,

a2 ¼ ~xT
j1

W j1W
�
j1
~xj2 � ~xT

j1
W j2W

�
j2
~xj2 ,

a3 ¼

�2Imð ~xT
j2

W j2W
�
j2
~xj02
Þ; Case b;

�2Imð ~xT
j1

W j1W
�
j1
~xj01
Þ; Case c;

�2Imð ~xT
j1

W j1W
�
j1
~xj01
þ ~xT

j2
W j2W

�
j2
~xj02
Þ; Case d;

8>><
>>:

a4 ¼

�2Imð ~xT
j02

W j2W
�
j2
~xj1Þ; Case b;

�2Imð ~xT
j2

W j1W
�
j1
~xj01
Þ; Case c;

�2Imð ~xT
j02

W j1W
�
j1
~xj1 þ ~xT

j2
W j1W

�
j1
~xj01
Þ; Case d;

8>>><
>>>:

a0 ¼

1
2
ðkW �

j1
~xj1k

2
2 þ kW

�
j2
~xj2k

2
2 þ kW

�
j1
~xj2k

2
2 þ kW

�
j2
~xj1k

2
2Þ þ kW

�
j2
~xj02
k22; Case b;

1
2
ðkW �

j1
~xj1k

2
2 þ kW

�
j2
~xj2k

2
2 þ kW

�
j1
~xj2k

2
2 þ kW

�
j2
~xj1k

2
2Þ þ kW

�
j1
~xj01
k22; Case c;

1
2
ðkW �

j1
~xj1k

2
2 þ kW

�
j2
~xj2k

2
2 þ kW

�
j1
~xj2k

2
2 þ kW

�
j2
~xj1k

2
2Þ þ kW

�
j1
~xj01
k22 þ kW

�
j2
~xj02
k22; Case d;

8>><
>>:

and Imð�Þ denotes the imaginary part of a complex number. Let

t ¼ tan
a
2

	 

then sin a ¼

2t

1þ t2
and cos a ¼

1� t2

1þ t2
,



ARTICLE IN PRESS
S. Xu, J. Qian / Journal of Sound and Vibration 317 (2008) 1–19 13
and hence we have

jðaÞ ¼
ða1 � a3Þt

4 þ ð2a4 � 4a2Þt
3 � 6a1t

2 þ ð4a2 þ 2a4Þtþ a1 þ a3

ð1þ t2Þ2
þ a0 	 cðtÞ. (48)

Then c0ðtÞ ¼ 0 gives rise to

ð4a2 � 2a4Þt
4 þ ð16a1 � 4a3Þt

3 � 24a2t2 � ð16a1 þ 4a3Þtþ 4a2 þ 2a4 ¼ 0. (49)

Suppose all real solutions to Eq. (49) are t1; . . . ; tsðsp4Þ, then we can easily find t0 which satisfies that
cðt0Þ ¼ max1pips cðtiÞ, and hence

sin a ¼
2t0

1þ t20
; cos a ¼

1� t20
1þ t20

(50)

are the required values in Eq. (42).

The rotations are applied in a natural order in sweeps through the matrix ~X k, and after a full sweep

comprising 1
2

pðp� 1Þ rotations we obtain ~X kþ1. The sweeps are repeated until

jf ð ~X kþ1Þ � f ð ~X kÞjp toljf ð ~X kÞj, (51)

where tol is a given positive number. The projections ~yj of the resulting vectors into subspaces Wj are then

determined by a similar way as Eq. (40) or Eq. (41). Let ~Y 1 ¼ ½ ~y1; ~y2; . . . ; ~yp�, then Y is just the first n rows of

~Y 1. In fact, to get Y, we do not need to form ~Y 1 explicitly. With Eq. (37), for real case, we have

yj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jmjj
2

q ~W jW
�
j ~xj=kW

�
j ~xjk2, (52)

and for complex case, we have

yj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jmjj
2

q ~W jW
�
j

1ffiffiffi
2
p ð ~xj þ i ~xkÞ

� �
W �

j

1ffiffiffi
2
p ð ~xj þ i ~xkÞ

� �����
����
2

�
,

yk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jmjj
2

q ~W jW
�
k

1ffiffiffi
2
p ð ~xj � i ~xkÞ

� �
W �

k

1ffiffiffi
2
p ð ~xj � i ~xkÞ

� �����
����
2

�
. (53)

Then we can compute Z by using Eq. (22). As for V ¼ ½v1; v2; . . . ; vp�, straightforward calculation leads to

vj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jmjj
2

q R�1j W �
j ~xj=kW

�
j ~xjk2, (54)

where Rj is defined in Eq. (38). Then if equality (21) holds, U is computed by solving Eq. (20), and then F and

G are obtained by substituting U into Eq. (13).
In summarizing, we have the following algorithm.
Algorithm OBS

Input: M ;C;K 2 Rn�n, B 2 Rn�m, L1 ¼ diagðl1; l2; . . . ; lpÞ 2 Cp�p,

X 1 ¼ ½x1;x2; . . . ;xp� 2 Cn�p, D ¼ diagðm1; m2; . . . ; mpÞ 2 Cp�p.

1. For j ¼ 1; 2; . . . ; p

compute the QR decomposition of QðmjÞ
�1B as in Eq. (38) and compute W j by Eq. (37),

end

2. Form L1R and X 1R and compute the QR decomposition of
�KX 1R

MX 1RL1R

" #
as in Eq. (39),

and take ~S1 as the initial matrix ~X 0, and set k ¼ 0.
3. For j1 ¼ 1; 2; . . . ; p, j2 ¼ j1 þ 1; . . . ; p

compute sin a and cos a by Eq. (46) or Eq. (50) and update ~xj1 and ~xj2 by Eq. (42),

end
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4. Set the resulted matrix as ~X kþ1.

5. If jf ð ~X kþ1Þ � f ð ~X kÞjptol � jf ð ~X kÞj, then go to Step 6; otherwise, set k ¼ k þ 1
and return to Step 3.

6. Compute Y ¼ ½y1; y2; . . . ; yp� by Eqs. (52) and (53), and then compute Z by Eq. (22).

7. Compute V ¼ ½v1; v2; . . . ; vp� by Eq. (54) and solve Eq. (20) for U.

8. Compute F and G by Eq. (13).
Output: F and G.
In Algorithm OBS only the knowledge of the eigenvalues to be changed and their corresponding
eigenvectors is required, and in each iteration of Step 3, f ð ~X Þ is nondecreasing. Although at this point we do
not have a complete convergence theory to support this algorithm, our numerical experiments show that it is
convergent, and does lead to better conditioned closed-loop systems.
4. Numerical examples

To illustrate the performance of the OBS method, in this section we give some numerical examples, which
were carried out using MATLAB 6.0 with machine epsilon � 
 2:22� 10�16. And we set tol ¼ 10�6 in
Algorithm OBS.

We take the following four problems as our test examples:

Prob. 1. In this problem, n ¼ 3; m ¼ 2; p ¼ 2. It is given in Refs. [7,8], and is defined by

M ¼ 10I3; C ¼ 0; K ¼

40 �40 0

�40 80 �40

0 �40 80

2
64

3
75; B ¼

1 2

3 2

3 4

2
64

3
75.

The system is undamped, and the eigenvalues of the quadratic pencil QðlÞ ¼ l2M þ lC þ K are

f�3:6039i; �2:49399i; �0:8901ig.

We want to alter the first 2 eigenvalues to �1;�2, while keep others unchanged.

Prob. 2. In this problem, n ¼ 4;m ¼ 2; p ¼ 4. It is from Ref. [9], and

M ¼ I4; C ¼

0:5 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0:5

2
6664

3
7775; K ¼

5 �5 0 0

�5 10 �5 0

0 �5 10 �5

0 0 �5 6

2
6664

3
7775; B ¼

1 0

0 1

0 0

0 0

2
6664

3
7775.

The 8 eigenvalues of the quadratic pencil QðlÞ are

f3:525;�3:559;�0:059� 3:732i;�0:191� 1:489i;�0:233� 2:692ig.

We are to alter the first 4 eigenvalues to �1;�2;�3;�4, while keep others unchanged.

Prob. 3. In this problem, n ¼ 4;m ¼ 2; p ¼ 2. M ;C;K and B are randomly chosen as

M ¼

1:4685 0:7177 0:4757 0:4311

0:7177 2:6938 1:2660 0:9676

0:4757 1:2660 2:7061 1:3918

0:4311 0:9676 1:3918 2:1876�

2
66664

3
77775; C ¼

1:3525 1:2695 0:7967 0:8160

1:2695 1:3274 0:9144 0:7325

0:7967 0:9144 0:9456 0:8310

0:8160 0:7325 0:8310 1:1536

2
6664

3
7775,
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K ¼

1:7824 0:0076 �0:1359 �0:7290

0:0076 1:0287 �0:0101 �0:0493

�0:1359 �0:0101 2:8360 �0:2564

�0:7290 �0:0493 �0:2564 1:9130

2
6664

3
7775; B ¼

0:3450 0:4578

0:0579 0:7630

0:5967 0:9990

0:2853 0:3063

2
6664

3
7775,

It is from Ref. [10], and the 8 eigenvalues of the quadratic pencil QðlÞ are

f�0:086� 1:624i;�0:102� 0:888i;�0:175� 1:192i;�0:448� 0:247ig.

We are to alter the first 2 eigenvalues to �1� 1:624i, while keep others unchanged.

Prob. 4. In this problem, n ¼ 10; m ¼ 3; p ¼ 4. It is from Ref. [11], and

M ¼ I10; C ¼ 0; K ¼

2 �1

�1 2 �1

. .
. . .

. . .
.

�1 2 �1

�1 1

2
6666664

3
7777775
; B ¼

I3

0

� �
.

The 20 eigenvalues of the quadratic pencil QðlÞ are

f�1:978i;�1:911i;�1:802i;�1:652i;�1:466i;�1:247i;�i;�0:731i;�0:445i;�0:150ig.

We are to alter the first 4 eigenvalues to �0:1;�0:2;�0:3;�0:4, while keep others unchanged.

Based on the orthogonality relation in Ref. [2], the algorithm proposed by B.N. Datta, S. Elhay and Y.M.
Ram’ [2] for single-input systems can be easily extended to multi-input systems, that is, with randomly chosen
Y satisfying Eq. (16), U is determined by Eq. (14), and F ;G are then obtained by Eq. (13). For simplicity, we
will write it as DER’s algorithm. We then apply DER’s algorithm, Algorithm OBS in this paper and the
algorithm in Ref. [3] to these four problems, respectively. The algorithm in Ref. [3] is also an iterative method,
and the convergence criterion is that the improvement of some measure of robustness is less than a specified
tolerance. But the algorithm in Ref. [3] is not guaranteed to converge, and the criterion may not be satisfied, so
to ensure the end of the iteration, a maximum number of allowed sweeps kmax is set (see Ref. [3] for details).
Furthermore, since in DER’s algorithm and the algorithm in Ref. [3], the initial matrices are randomly chosen,
we run both these two algorithms 100 times for each problem.

To show the accuracy of the algorithms, we should have computed the differences between the computed
solutions and the real solutions. But unfortunately, the real solutions are unknown for these four problems, so
we compute the maximum differences between the computed eigenvalues of the closed-loop systems and the
poles to be assigned instead, and list them in Table 1. For DER’s algorithm and the algorithm in Ref. [3], the
maximum differences are average maximum differences over 100 trials.

From Table 1, we can see that all the three algorithms are accurate enough in some sense, since the dif-
ferences are all very small. To illustrate the performance of our algorithms, we also compute the F-condition
numbers of the matrices of eigenvectors of the closed-loop systems generated by the three algorithms, and
list them in Table 2. Similarly, for DER’s algorithm and the algorithm in Ref. [3], the numbers are average
F-condition numbers over 100 trials.
Table 1

Maximum differences

DER’s algorithm Algorithm OBS Algorithm in Ref. [3]

Prob. 1 2:158� 10�13 1:838� 10�14 1:776� 10�14

Prob. 2 5:019� 10�14 1:437� 10�13 1:688� 10�14

Prob. 3 2:037� 10�14 2:857� 10�14 2:842� 10�15

Prob. 4 2:902� 10�11 1:830� 10�13 2:737� 10�13
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Table 2

F-condition numbers of the matrices of eigenvectors

DER’s algorithm Algorithm OBS Algorithm in Ref. [3]

Prob. 1 1717:91 16:896 16:896
Prob. 2 6952:19 1074:53 541:52
Prob. 3 101:62 22:75 29:01
Prob. 4 1:744� 105 5:016� 103 1:036� 103

Table 3

Maximum changes of eigenvalues due to perturbations in coefficient matrices

DER’s algorithm Algorithm OBS Algorithm in Ref. [3]

Prob. 1 0:2779 0:0021 0:0025
Prob. 2 0:5871 0:2475 0:1668
Prob. 3 0:2881 0:0349 0:0361
Prob. 4 0:6327 0:3076 0:2853

Fig. 1. The closed-loop eigenvalues under 100 random 1% perturbations on Mc;Cc and Kc for Prob. 1.
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Since DER’s algorithm is proposed for Problem PEA, which means that it does not consider robust
solutions to Problem PEA, we may expect that our algorithms should improve robustness of the closed-loop
systems. From Table 2, we can see that Algorithm OBS and the algorithm in Ref. [3] do lead to better
conditioned closed-loop systems. These are also illustrated in Table 3 and Figs. 1–4. We perturb the coefficient
matrices Mc ¼M ;Cc ¼ C � BFT and Kc ¼ K � BGT by DMc;DCc and DKc with

kDMck2o0:01kMck2; kDCck2o0:01kCck2; kDKck2o0:01kKck2,
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Fig. 2. The closed-loop eigenvalues under 100 random 1% perturbations on Mc;Cc and Kc for Prob. 2.

Fig. 3. The closed-loop eigenvalues under 100 random 1% perturbations on Mc;Cc and Kc for Prob. 3.
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where F ;G are computed by the three algorithms, respectively. For each problem we perturb it 100 times. The
maximum differences between the eigenvalues of the closed-loop system and the eigenvalues of the perturbed closed-
loop systems are listed in Table 3, and the eigenvalues of the perturbed closed-loop systems are plotted in Figs. 1–4.
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Fig. 4. The closed-loop eigenvalues under 100 random 1% perturbations on Mc;Cc and Kc for Prob. 4.

Fig. 5. The changes of f ð ~X Þ with respect to the sweeps for Prob. 4.

S. Xu, J. Qian / Journal of Sound and Vibration 317 (2008) 1–1918
For the four problems, Algorithm OBS converges after 2; 6; 2 and 10 sweeps, respectively. While for the
algorithm in Ref. [3], sometimes the convergence criterion cannot be satisfied, and it stops just because the
maximum number of allowed sweeps kmax is reached. Especially for Prob. 2 and Prob. 3, among the 100 trials
to each of the two problems, the algorithm in Ref. [3] stops because kmax is reached for 94 and 96 times,
respectively. Fig. 5 shows the changes of f ð ~X Þ with respect to the sweeps, when Algorithm OBS is applied to
Prob. 4.
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5. Conclusions

In this paper, we have developed a new numerical method for the robust partial eigenvalue assignment
problem in second-order control systems, which means that the feedback control matrices not only assign
specific eigenvalues to the second-order closed-loop system, but also that the system is robust. It is to minimize
one measure of conditioning of the closed-loop system, where eigenvectors are chosen in certain subspaces
such that some measure of the distance between the eigenvectors and some orthogonal basis of a certain
subspace is minimized. In this method, only the knowledge of the eigenvalues to be changed and their
corresponding eigenvectors is required. Although we do not have a complete convergence theory to support
this method, our numerical examples show that the present method is convergent, and often leads to better
conditioned closed-loop system.
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